Electrode Architectures for High power density Li-ion batteries

Electrode Architecture

Electrochemical Testing

Uniform Increase in loading → Had minimal impact on the C-rate

Effect of Electrode composition

With low rate material

Layered- layered Oxide active material

Comparision

Energy Harvesting from Infrared Sources

Need

Modern day smart soldier

- ➤ Needs a continuous source of energy for various electronics, communication and sensing devices.
- ➤ Need to carry less heavy batteries and reduce the warfighter's load.
- ➤ Other energy harvesters are either heavy or cannot provide the needed power.
- ➤ Thin film organic photovoltaic cannot provide power in the absence of sunlight (e.g. nighttime cloudy days etc.).

→ A light weight flexible device capable of harvesting energy continuously and producing enough power to properly power various portable devices.

Objectives & Advantages

Objectives:

- To harvest energy at any time even in the absence of sunlight.
- To harvest energy from any heat source
- To harvest energy from sunlight complementing solar cells.

Advantages:

- Extremely lightweight
- Flexible
- Easily incorporated into fabrics
- Low manufacturing cost

Application:

- Remote operations
- Emergency situations
- Stand alone operations

Sources of infra red

Daytime sunlight

Manmade

Microprocessor

Human Body

Vegetation Nighttime

Infra red Antenna – Barriers

Antenna:

- Excellent resonance (>80%) in the desired frequency range (300GHz-450THz)
- ➤ Choice of materials need to exhibit very low electronic transition when coupling to the incident photon (reduced loss)
- ➤ Needs Nano-micro scale features to address the desired frequency range
- ➤ Low electron phonon coupling (low heat generated)

Rectifier circuit:

- ➤ Needed diodes operating in the 300GHz-450THz range with efficiency >80%
 - → There are no diodes available commercially in that range.
 - → Research efforts are very limited.
- ➤ Low cost manufacturing method to address cost effectiveness.

Coupling circuit:

- ➤ Needed to have ~90% coupling efficiency.
- > Current couplers have not been tested in the desired frequency range

How Does it Compare with Thermoelectric Harvester

Design & Simulation

Antenna Fabrication

Fluidic assembly is employed

Testing with Commercial W band (30GHz) diodes

Circuit employed

Testing setup

→ Energy harvested was several hundreds of Nano watts